Engineering Mathematics Department Academic year: 2012 / 2013 Math. 1 Code: Math 101 Semester: **Spring** Mid-Term Exam 7 / 4 / 2013 Examiners: Dr. Mona Samir Time Allowed: 1 hour Dr. Mohamed Eid For Technology & Information Total Mark: 30 **Answer All Questions** Faculty of Engineering [1] Find the following limits: 6 (b) $\lim_{x\to 0} \frac{x-\sin x}{x+\sin x}$ (c) $\lim_{x\to\infty} \frac{2x+1}{x^2+x}$ [2](a) Find the maximum and minimum points of : $f(x) = x^2 - 4x + 5$ 4 (b) Find y from the equation: $y^3 + \sin y + x^2 + \sin^{-1} x = 6$ 4 [3]Find y`where: 16 (b) $y = 5^{x^2} + x^{-3} \cdot \cos x^3$ (a) $y = 3x^4 + 3^x + 2$ (d) $y = sinh^4 x . sin^{-1} x^2$ (c) $y = \sin \ln x + \log(x + \tan x)$

Good luck

(e) $y = [\tan^{-1}x^3 - \tanh^{-1}x]^8$

Dr. Mona Samir

(g) $y = t^3 - \tan t$, $x = t^2 + \cosh t$ (h) $y = \sqrt{x+3} \cdot \sinh^{-1} x$

Dr. Mohamed Eid

(f) $y = \sec x \cdot \operatorname{sech} 2x$

Basic Science Department Math. 1 Code: Math 101 Final Exam: 26 / 5 / 2013

Time Allowed: 2 hours

For Technology & Information **Faculty of Engineering**

Academic year: 2012 / 2013 Semester: Spring Examiners: Dr. Mona Samir

Dr. Mohamed Eid

Total Mark: 40

8

2

3

3

12

12

Answer All Questions

Ouestion 1 Find **y** from the following:

(a)
$$y = 2x^3 + 3\sin 2x$$

(b)
$$y = \sin 2x \cdot \log(x^2 + 3)$$

(c)
$$y = [5^{x^3} + \cosh x]^8$$

(d)
$$v = \sin \ln x + \ln \cos x$$

Question 2

(a) Find y` where
$$y = t + sinh^4 t$$
, $x = t + sin^{-1} t$

(b) Find y from the equation: $x^2y^3 + \sin(xy) = 2x$

(c) Determine the maximum and minimum points of the function:

$$f(x) = x^3 + 6x^2 + 12x$$

Question 3

Find the following integrals:

(a)
$$\int (x^4 + \frac{4}{x} + 4x) dx$$

(a)
$$\int (x^4 + \frac{4}{x} + 4x) dx$$
 (b) $\int (4^x + 3\cos 2x) dx$

(c)
$$\int \frac{1+\cos x}{x+\sin x} dx$$

(d)
$$\int \frac{x}{x^2 - 3x - 4} dx$$
 (e) $\int x \cdot \ln x \, dx$

(e)
$$\int x \cdot \ln x \, dx$$

$$(f) \int \frac{x^3}{\sqrt{1-x^2}} dx$$

Question 4

(a) Find the integral: $\int \cos^4 x \, dx$

(b) Compute the area of the region bounded by the curve $f(x) = (x-2)^2$, x- axis, x in [0, 2].

(c) If the above region is rotated about: (i) x-axis (ii) y - axis.

Compute the volume V_x and the volume V_y of the generated solids.

Good luck

Dr. Mona Samir

Dr. Mohamed Eid

Group ID Name

Find the integrals:

$$(1) \int (x^2 + 2^x) dx$$

(2)
$$\int 2x[3+x^2]^8 dx$$

$$(3) \int (x^2+3)^2 dx$$

(4)
$$\int (\frac{1}{x} + \frac{3}{x-2} + \frac{1}{x^2}) dx$$

$$(5) \int \frac{x}{x^2 - 2x - 3} dx$$

(6)
$$\int x \sin x dx$$

Ouiz	IV

ID:

Name:

Find the integrals:
(1)
$$\int (\frac{1}{x} + \frac{1}{x^3}) dx$$

$$(2) \quad \int (3^x + 2\cos 3x) \, dx$$

(3)
$$\int (x \ln x) dx$$

(4) Compute the area of the region bounded by the curve $y = \frac{1}{x+2}$, x-axis, x in [0, 2].

(5) If the region bounded by the curve $y = \frac{1}{x+2}$, x-axis, x in [0, 2] is rotated about x-axis. Find the volume of the generated solid.

(6) Find the length of the curve $y = 1 + x\sqrt{x}$ between the points (0, 1), (1, 2).